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S T E R E O S T R U C T U R E  O F  2 - E T H Y N Y L - S U B S T I T U T E D  2,4,4- 

T R I M E T H Y L - I , 3 - D I O X A N E S  

T. P. Kosulina, F. Kh. Karataeva, V. E. Zavodnlk, 
and V. G. Kul'nevich 

It has been shown by PMR spectrometry and x-ray structure analysis that the six-membered 1,3-dioxane ring 
of 2-ethynyl-substituted 2, 4, 4-trimethyl-1,3-dioxanes, either in solution or in the solid state, exists in a nearly 

ideal chair conformation with an axial position of the ethynyl substituent. 

Certain compounds that we had synthesized previously [1-3], 2-ethynyl-substituted 2,4,4-trimethyl-l,3--dioxanes (I- 
IV), are of interest not only as predecessors of a-acetylene ketones [3], but also as models for studying the influence of 

substituents in positions 2 and 4 on the conformation of the six-membered ring. 
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The spatial structure of compounds I-IV was established by PMR spectrometry. The parameters of the spectra are 
listed in Table 1. Analysis of the values of the chemical shift and spin-spin coupling constants indicates that all ~f the 
compounds of this series exist predominantly in the chair conformation, since there is a phenomenon of inversion of chemical 
shifts of the methylene protons at the C(5 ) atom (Table 1). This is explained mainly by a charge displacement effect [4] that 
is characteristic for compounds with heteroatoms carrying an unshared electron pair, with an upfield shift experienced by the 

5-H e proton in the anti position relative to the heteroatom [5]. It should be noted that the difference in chemical shifts of the 
axial and equatorial protons in position 5 (A~55aSe) is considerably smaller than for the analogous protons of 1,3-dioxane 
( -0 .72  ppm) [6], with the following values (in ppm): Compound I, 0.35 (CDCI 3) and 0.45 (CD2CI 2 + CC14); compound II, 
0.40 (CC14); compound III, 0.16 (CC14); compound IV, 0.60 [(CD3)2CO ] and 0.20 (CD2C12) (see Table 1). The decrease in 
values of A~55aSe is related to the influence of the two methyl groups in the B-position relative to the 5-H a and 5-H e protons, 
with the B-effect being particularly significant for the axial proton. In 1,3-dioxanes, an equatorial methyl group shifts the 
signal of the ring proton in the B-position relative to the methyl group, with an upfieid shift of 0.4 ppm; and as a 
consequence, inversion of chemical shifts of the axial and equatorial protons in position 5 cannot be observed [6]. 

In the case of the methylene protons H A and H a at the C(6 ) atom, we also observe inversion of the nuclear magnetic 
screening constants and significant values of 6/~HAHB (from 0.42 to 0.60 ppm; see Table 1), which is a characteristic 
indicator for 1,3-dioxanes in the chair conformation [6]. The assignment of signals to the axial and equatorial protons was 

made on the basis of an analysis of parameters of the four-spin system ABXY and the substantial difference in values of the 
SSCC 3JAa (11.7-12.3 Hz) and 3JBa (5.0-5.5 Hz) (Table 1). At the C(4 ) atom, the protons of the gem-dimethyl grouping also 
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Fig. 1. Fragments of PMR spectrum of dimethyl-bis[(2,4,4-trimethyl-l,3-dioxanyl-2)- 

ethynyl]silane, taken in (CD3)2CO. 
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Fig. 2. Structure of the 1,3-dioxane IV as determined by x-ray structure 

analysis. 

experience inversion of chemical shifts with rather large values of A6MeaMee (--0.33 : --0.67 ppm); here, the signal of the 

axial methyl is broadened in comparison with that of the equatorial methyl as a consequence of spin-spin coupling with the 

5-H a proton. Usually, the value of the long-range SSCC 4JHCCCH3 is about 0.8 Hz [7]; for compound IV, it is equal to 0.7 

Hz (Fig. 1). In principle, inversion of chemical shifts of protons in position 6 and the gem-dimethyl grouping at the C(4 ) atom 

in six-membered heterocycles is used as a criterion of the axial position of the substituent at the C(2 ) atom. In the series of 

compounds I-IV, there are two substituents in this position, i.e., a CH 3 group and an ethynyl-containing fragment. It has 

been shown by numerous physicochemicai studies of 2-methyl-substituted cyclohexanes and 1,3-dioxanes that a two- 

component equilibrium is realized in solution, between identical conformational structures --  the chair-a (Ka) and the chair-e 

(Ke), with the axial conformer accounting for 4% [8, 91. 
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A study of the influence of temperature in the case of 5,5-dimethyi-l,3-dioxane with a C - - C H  at the C(2 ) atom of 

the ring, by means of dynamic IH and 13C NMR, revealed a predominance of the chair-axial conformer K a, with a value of 

AG283 in (CD3)2CO equal to 1.81 kJ/mole [10]. in this case (and also for compounds l-IV), the reason for the inversion of 

chemical shifts of the protons at the C(4 ) and C(6 ) atoms may be the magnetically anisotropic and electrical effects of the axial 

C - C  bond in the chair conformation K a, the same as in cyclic esters and sulfites [7]. Nonetheless, according to data on the 

influence of the solvent on conformational equilibrium in solutions of similar compounds [10], we cannot eliminate the 

possibility of a certain contribution of the K e form. This is supported by the fact of change in magnitude of the SSCC 

(geminal and vicinal) when the solvent is changed in the case of compounds I and IV (Table 1). 

In Fig. 1 we show part of the IH NMR spectrum of compound IV, in which there are signals of the protons at the 

C(5 ) (H a) and C(6 ) atoms. 

The region of resonance of A,B-protons shows up as a typical spectrum of an ABXY system, where the values of the 

SSCC are strictly stereospecific within the framework of a chairlike conformation of the 1,3-dioxane systems [7]: 2JAB 

- 3JAa ( -  12.6, 11.9 Hz), 3JBa - 1/2 3JAa (5.2, 11.9 Hz), 3JAe > 3JBe (2.45, 2.0 Hz). The more complex form of the 

multiplet pertaining to the 5-H a proton is due to its long-range spin-spin coupling with the protons of the axial methyl group 

in position 4 (4JHCCCH3, 0.7 Hz). The value of A,SAa, 0.5 ppm, is higher than for 1,3-dioxane (0.34 ppm) and is somewhat 

lower than the analogous value in cyclohexane (0.55 ppm) [6]. The value of the geminal constant 2JAB = --12.6 Hz, which 

is extremely sensitive to the stereochemistry of six-membered heterocycles, is 0.45 Hz lower than the value for the methylene 

fragment in cyclohexane. According to the theory set forth in [11], the geminal constant 2JHH in CH2X fragments will depend 

on the C - H  bonds and on the relative position of the unshared electron pair of X, which is related to the cyclic torsion angle 

~o. By using plots of  A2JHH as a function of r we can estimate the torsion angle of a fragment containing a heteroatom with 

an unshared electron pair. In the present case, this angle is - 5 6 ~  i.e., the carbon part of the ring is somewhat flattened in 

comparison with cyclohexane (58 ~ [12]; according to data reported in [6, 13], this is the reason for the decrease in 

magnitude of nonequivalence of chemical shifts of the A,B-protons (in comparison with cyclohexane). A more precise 

evaluation of the torsion angles can be made by means of the R-factor, since its use requires values of all four SSCCs 3JHH. 

Values calculated for the R-factor [ 13] and the corresponding torsion angles that are listed in Table 1 demonstrate structural 

uniformity of compounds I-IV, and these values are in good agreement with data obtained for 1,3-dioxanes by x-ray 
diffraction [7]. 

In order to confirm these results and to study 2-ethynyl-substituted 1,3-dioxanes, with the aim of investigating the 

conformation of the 1,3-dioxane ring and the position of the ethynyl fragment relative to this ring, we investigated the 

molecular-crystal structure of the 1,3-dioxane IV by x-ray diffraction. In Fig. 2 we illustrate the geometry of a three- 

dimensional model of the molecule of dimethyl-bis[(2,4,4-trimethyl-1,3-dioxanyl-2)ethynyl]silane (IV). The coordinates of the 

atoms, the bond lengths, bond angles, and torsion angles are listed in Tables 2-5. The 2,4,4-trimethyl-l,3-dioxanyl-2-ethynyl 

fragments are absolutely identical; therefore, in the subsequent discussion, we will consider only one of these fragments. In 

most cases, the interatomic distances and the bond angles match the standard values [ 14]. An exception is found in the system 

of atoms Si -C( i  ) -C(2  )-C(3 ). The linearity of this fragment is disrupted, since the angles Si-Csp = Csp and Csp ~ Csp-Csp 3 

are equal to 171.2 ~ and 178.8 ~ respectively, and their change is due to steric strain at the tetracoordinated silicon atom. This 

view is further supported by the change in bond lengths. Whereas the length of the Si-Csp 3 bond (1.838 A) is close to the 

standard value, the length of the Si-Csp.bonds (1.835 A) is significantly higher (by 0.033 A) in comparison with the bond of 

methylethylsilane, (dsi-Csp* = 1.802 A) [15]. The same sort of lengthening of the Si-Csp bond to 1.829 A and 1.851 ,~ 

(dsi-Csp 0.020 and 0.049 ,~,) had been established by x-ray diffraction measurements for the molecules of 1,8- 
bis(trimethylsilyl)octatetrayne [ 16] and bis[di(tert-butyl)tert-butylamino]silylacetylene [17]. 

The 1.3-dioxane ring has the conformation of a slightly distorted chair (folding parameters [18] S = - 1 .  105, 0 = 

6.41~ 'P2 = 90.79~ 

*Notation as in Russian original: there are apparent errors in the notation and also possibly in the values - -  Translator. 
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TABLE 2. Coordinates of Atoms in Molecule of the 1,3-Dioxane IV ( x  104) 

Atom ~ ), z 

Si 
OU) 
0(2) 
CO) 
C(2) 
CO) 
C(41 
C(5) 
C(6) 
C(7) 

C(8) 
C(9) 
COo) 

7500(0) 

4943 ( 1 ) 
5251(1) 
686O(2) 

6326(2) 
5679(1) 

6287(21 
4077(2) 
3683(2) 
4515(2) 

4338(2) 
3335(2) 

8465(2) 

5000(0) 

3581 ( I )  

3033 ( ! ) 
4395 ( 1 ) 
3998 ( I )  
3501( i )  

3382( I )  
3560(1) 
3063 ( 1 ) 
3046 ( 1 ) 

4099 ( 1 ) 
3478(1) 

4947 ( I ) 

1712(I) 
"7358(2) 
4655(2) 
3594(4) 
4705(3) 
6108(5) 
7910(3) 
6118(4) 
4496(4) 
3105(4) 
4850(4) 
8039(5) 
-80(6) 

TABLE 3. Bond Lengths (d) in Molecule of the 1,3-Dioxane IV 

Bond 

Si--C(1) 
Si--C(la) 
Ou)--C(3) 
0(2)--C(3) 
C(0--C(2) 
C(3)--C(,~) 
C(5)--C(8) 
C(6)--C(7) 

d.A 

1,835(2) 
1,835(2) 
1,416(3) 
1,411 (2) 

1,196(2) 
1.512 (4) 
1,524(3) 
1,501 (4) 

Bond 

Si--Co0 ) 
Si--C(loa) 
O0)--C(s) 
0(2)--C(7) 
C(2)--C(3) 
C(s)--C(~) 
C(5)--C(9) 

d,A 

1,838(4)  
1 ,838(4)  
1,460(3) 
1,433(3) 
1,494(2)  
1,525(3) 
1,513(4) 

Thus, by means of IH NMR spectrometry and x-ray structural analysis, it has been established for the 2-ethynyl- 

substituted 2,4,4-trimethyl-l,3-dioxanes I-IV that the 6-membered dioxane ring has the chair conformation with an axial 

position of the ethynyl-containing fragment at C(2 ) of the ring. 

R 
I 
C 
III 

Me C 
H A 

H e ~ ' ~ 8 0  

Ha l-IV 

EXPERIMENTAL 

The PMR spectra of compound I were recorded in Bruker spectrometers (200 and 80 MHz) in CDCI 3 and CD2CI 2, 

respectively. The PMR spectra of compounds II-IV were recorded in a Tesla BS-467 spectrometer (60 MHz) in CC14 and 

CD2CI2; the spectrum of compound IV was also recorded in a Varian Unity 300 instrument in (CD3)2CO. The pulse length 

was 7.0/xsec, pulse length at 90 ~ 14.2/xsec. depth of sweep 6000 Hz, data memory volume 16 K, scanning time 4.5 sec, lag 

between pulses 4 sec. Internal standard HMDS. 

X-Ray Structure Study of IV. Transparent, colorless, monoclinic crystals of compound IV were grown from 50% 

aqueous alcohol. Elementary cell constants: a = 14.984(4), b = 27.220(6), c = 5.773(1) ,~, ,y = 117.19(2) ~ V = 

2094.4(1.8) A 3. Space group A2/a, Z = 4, dcalc= 1.143 g/cm 3. Cell constants of 1072 independent reflections with I > 

I45 



TABLE 4. Bond Angles (o~) in Molecule of the 1,3-Dioxane IV 

Angle ca (deg) Angle ca (deg) 

C(t ) - -Si - -C( lo)  
C(to)- -Si- -C( la)  
COo)--Si--Cooa ) 
C(3)--0(1)--C(5) 
Si--C(I)--C(2) 
0(1)--C(3)--0(21 
0(2)--C(3)--C(2) 
0(2)--C(3)--C(4) 
00)--C(5)--C(6) 
C(6)--C(5)--C(8) 
C(6)--C(5)--C(9) 
0(5)--C(6)--C(7) 

111,7(1) 
107,3(I) 
I ! 1,5(2) 
I 19,0(1 ) 
171,2(2) 
I 12.2(2) 
109,6(2) 
106,6 (2) 
108,2(2) 
112,7(2) 
111,1 (2) 
I I 1,5(2) 

C ( l ) - - S i - - C o a  ) 
C(l)--Si--C(toa) 
C(la)--Si--C(loa) 
C(3)--0(2)--C(7) 
C(t)--C(2)--C(3) 
0 (1)--C(3)--C(2) 
00)--C(3)--C(4) 
C(2)--C(3)--C(4) 
0(i)--C($3--C(8) 
00)--C(~--C(9) 
C(a)--C(5)--C(9) 
0(2)--C(7)--C(6) 

107,4(I) 
107,3(1) 
I I 1,7( I  ) 
112,7(2) 
178,8(3) 
I 11,4(2) 
105,7 (2) 
111,2(2) 
I I 1,4(2) 
103,1 (2) 
109.9(2) 
109,0(2) 

TABLE 5. Torsion Angles (r) in Molecule of the 1,3-Dioxane IV 

Angle r (deg) Angle r (deg) 

Coo)--Si--C(t)--C(2) 
C(la)--Si--C(I)--C(2) 
Cooa)--Si--C(o--C(2 ) 
Si~C(I)IC(2)--C(3) 
C(~iO(l)IC(3)--O(2) 
C(s) IO(I)--C(3)--C(2) 
C(5)--00)--C(3)--C(4) 
C(7)--0(2)IC(3)I0(1) 
C(7)--0(2)--C(3)--C(2) 
C(7)--0(2)--C(3)--0(4) 
C(l)--C(2)iC(3)--O(I) 

-129,7 
111,9 
-7,3 

170,4 
-48,1 
75,1 

-164,0 
54,7 

-69,6 
170,0 
138,4 

C(1)--C(2)--C0)--0(2) 
C(I)--C(2)--Co)--C(4) 
C(3)--00)-C(5)--C(6) 
C(3)--O(I)--C(5)--C(a) 
C(3)--00)--C(5)--C(9) 
0(1)--C(5)--C(6)--C(7) 
C(a)--C(5)--C(6)--C(7) 
C(9)iC(5)--C(6)IC(7) 
C(3)--0(2)--C(7)--C(6) 
C(5)--C(6)--C(71--0(21 

-96,8 
20,8 
44,8 

-79,6 
162,5 
-48,5 
75,2 

-161,0 
-60,5 
57,7 

3o(I) were measured in a Nicolet P3 automatic diffractometer (MoKa radiation without monochromator, 0/20 scanning to 

20ma x = 36~ The structure was deciphered by the direct method, using the SHELXTL program set [19] and was refined in 

the anisotropic approximation (isotropic for hydrogen atoms) down to a divergence factor R = 0.030, R w = 0.033. 

The coordinates of the hydrogen atoms may be obtained from the authors upon request. 

The syntheses of the 1,3-dioxanes I, II and III, and IV were performed by procedures given in [2, 3, 1], respectively. 
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