STEREOSTRUCTURE OF 2-ETHYNYL-SUBSTITUTED 2,4,4-TRIMETHYL-1,3-DIOXANES

T. P. Kosulina, F. Kh. Karataeva, V. E. Zavodnik, and V. G. Kul'nevich

It has been shown by PMR spectrometry and x-ray structure analysis that the six-membered 1,3-dioxane ring of 2-ethynyl-substituted 2,4,4-trimethyl-1,3-dioxanes, either in solution or in the solid state, exists in a nearly ideal chair conformation with an axial position of the ethynyl substituent.

Certain compounds that we had synthesized previously [1-3], 2-ethynyl-substituted 2,4,4-trimethyl-1,3-dioxanes (I-IV), are of interest not only as predecessors of α -acetylene ketones [3], but also as models for studying the influence of substituents in positions 2 and 4 on the conformation of the six-membered ring.

The spatial structure of compounds I-IV was established by PMR spectrometry. The parameters of the spectra are listed in Table 1. Analysis of the values of the chemical shift and spin-spin coupling constants indicates that all of the compounds of this series exist predominantly in the chair conformation, since there is a phenomenon of inversion of chemical shifts of the methylene protons at the $C_{(5)}$ atom (Table 1). This is explained mainly by a charge displacement effect [4] that is characteristic for compounds with heteroatoms carrying an unshared electron pair, with an upfield shift experienced by the 5-H_e proton in the anti position relative to the heteroatom [5]. It should be noted that the difference in chemical shifts of the axial and equatorial protons in position 5 ($\Delta\delta_{5a5e}$) is considerably smaller than for the analogous protons of 1,3-dioxane (-0.72 ppm) [6], with the following values (in ppm): Compound I, 0.35 (CDCl₃) and 0.45 (CD₂Cl₂ + CCl₄); compound II, 0.40 (CCl₄); compound III, 0.16 (CCl₄); compound IV, 0.60 [(CD₃)₂CO] and 0.20 (CD₂Cl₂) (see Table 1). The decrease in values of $\Delta\delta_{5a5e}$ is related to the influence of the two methyl groups in the β -position relative to the 5-H_a and 5-H_e protons, with the β -effect being particularly significant for the axial proton. In 1,3-dioxanes, an equatorial methyl group shifts the signal of the ring proton in the β -position relative to the methyl group, with an upfield shift of 0.4 ppm; and as a consequence, inversion of chemical shifts of the axial and equatorial protons in position feative to the methyl group, with an upfield shift of 0.4 ppm; and as a consequence, inversion of chemical shifts of the axial and equatorial protons in position 5 cannot be observed [6].

In the case of the methylene protons H_A and H_B at the $C_{(6)}$ atom, we also observe inversion of the nuclear magnetic screening constants and significant values of $\Delta\delta_{HAHB}$ (from 0.42 to 0.60 ppm; see Table 1), which is a characteristic indicator for 1,3-dioxanes in the chair conformation [6]. The assignment of signals to the axial and equatorial protons was made on the basis of an analysis of parameters of the four-spin system ABXY and the substantial difference in values of the SSCC ${}^{3}J_{Aa}$ (11.7-12.3 Hz) and ${}^{3}J_{Ba}$ (5.0-5.5 Hz) (Table 1). At the C₍₄₎ atom, the protons of the gem-dimethyl grouping also

Kuban State Technological University, Krasnodar 350072, Russia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 163-169, February, 1998. Original article submitted April 25, 1997; revision submitted September 2, 1997.

Fig. 1. Fragments of PMR spectrum of dimethyl-bis[(2,4,4-trimethyl-1,3-dioxanyl-2)ethynyl]silane, taken in (CD₃)₂CO.

Fig. 2. Structure of the 1,3-dioxane IV as determined by x-ray structure analysis.

experience inversion of chemical shifts with rather large values of $\Delta \delta_{Me} a_{Me} e (-0.33 : -0.67 \text{ ppm})$; here, the signal of the axial methyl is broadened in comparison with that of the equatorial methyl as a consequence of spin-spin coupling with the 5-H_a proton. Usually, the value of the long-range SSCC ⁴J_{HCCCH3} is about 0.8 Hz [7]; for compound IV, it is equal to 0.7 Hz (Fig. 1). In principle, inversion of chemical shifts of protons in position 6 and the gem-dimethyl grouping at the C₍₄₎ atom in six-membered heterocycles is used as a criterion of the axial position of the substituent at the C₍₂₎ atom. In the series of compounds I-IV, there are two substituents in this position, i.e., a CH₃ group and an ethynyl-containing fragment. It has been shown by numerous physicochemical studies of 2-methyl-substituted cyclohexanes and 1,3-dioxanes that a two-component equilibrium is realized in solution, between identical conformational structures — the chair-a (K_a) and the chair-e (K_e), with the axial conformer accounting for 4% [8, 9].

A study of the influence of temperature in the case of 5,5-dimethyl-1,3-dioxane with a C = CH at the C₍₂₎ atom of the ring, by means of dynamic ¹H and ¹³C NMR, revealed a predominance of the chair-axial conformer K_a, with a value of ΔG_{283} in (CD₃)₂CO equal to 1.81 kJ/mole [10]. In this case (and also for compounds I-IV), the reason for the inversion of chemical shifts of the protons at the C₍₄₎ and C₍₆₎ atoms may be the magnetically anisotropic and electrical effects of the axial C = C bond in the chair conformation K_a, the same as in cyclic esters and sulfites [7]. Nonetheless, according to data on the influence of the solvent on conformational equilibrium in solutions of similar compounds [10], we cannot eliminate the possibility of a certain contribution of the K_e form. This is supported by the fact of change in magnitude of the SSCC (geminal and vicinal) when the solvent is changed in the case of compounds I and IV (Table 1).

In Fig. 1 we show part of the ¹H NMR spectrum of compound IV, in which there are signals of the protons at the $C_{(5)}$ (H_a) and $C_{(6)}$ atoms.

The region of resonance of A,B-protons shows up as a typical spectrum of an ABXY system, where the values of the SSCC are strictly stereospecific within the framework of a chairlike conformation of the 1,3-dioxane systems [7]: ²J_{AB} $\sim {}^{3}J_{Aa}$ (-12.6, 11.9 Hz), ${}^{3}J_{Ba} \sim 1/2 {}^{3}J_{Aa}$ (5.2, 11.9 Hz), ${}^{3}J_{Ae} > {}^{3}J_{Be}$ (2.45, 2.0 Hz). The more complex form of the multiplet pertaining to the 5-H_a proton is due to its long-range spin-spin coupling with the protons of the axial methyl group in position 4 (${}^{4}J_{HCCCH3}$, 0.7 Hz). The value of $\Delta\delta_{AB}$, 0.5 ppm, is higher than for 1,3-dioxane (0.34 ppm) and is somewhat lower than the analogous value in cyclohexane (0.55 ppm) [6]. The value of the geminal constant ${}^{2}J_{AB} = -12.6$ Hz, which is extremely sensitive to the stereochemistry of six-membered heterocycles, is 0.45 Hz lower than the value for the methylene fragment in cyclohexane. According to the theory set forth in [11], the geminal constant ²J_{HH} in CH₂X fragments will depend on the C-H bonds and on the relative position of the unshared electron pair of X, which is related to the cyclic torsion angle φ . By using plots of $\Delta^2 J_{HH}$ as a function of φ , we can estimate the torsion angle of a fragment containing a heteroatom with an unshared electron pair. In the present case, this angle is ~56°; i.e., the carbon part of the ring is somewhat flattened in comparison with cyclohexane (58°) [12]; according to data reported in [6, 13], this is the reason for the decrease in magnitude of nonequivalence of chemical shifts of the A,B-protons (in comparison with cyclohexane). A more precise evaluation of the torsion angles can be made by means of the R-factor, since its use requires values of all four SSCCs ³J_{HH}. Values calculated for the R-factor [13] and the corresponding torsion angles that are listed in Table 1 demonstrate structural uniformity of compounds I-IV, and these values are in good agreement with data obtained for 1,3-dioxanes by x-ray diffraction [7].

In order to confirm these results and to study 2-ethynyl-substituted 1,3-dioxanes, with the aim of investigating the conformation of the 1,3-dioxane ring and the position of the ethynyl fragment relative to this ring, we investigated the molecular-crystal structure of the 1,3-dioxane IV by x-ray diffraction. In Fig. 2 we illustrate the geometry of a three-dimensional model of the molecule of dimethyl-bis[(2,4,4-trimethyl-1,3-dioxanyl-2)ethynyl]silane (IV). The coordinates of the atoms, the bond lengths, bond angles, and torsion angles are listed in Tables 2-5. The 2,4,4-trimethyl-1,3-dioxanyl-2-ethynyl fragments are absolutely identical; therefore, in the subsequent discussion, we will consider only one of these fragments. In most cases, the interatomic distances and the bond angles match the standard values [14]. An exception is found in the system of atoms Si $-C_{(1)} \equiv C_{(2)} - C_{(3)}$. The linearity of this fragment is disrupted, since the angles Si $-C_{sp} \equiv C_{sp} = C_{sp} - C_{sp3}$ are equal to 171.2° and 178.8°, respectively, and their change is due to steric strain at the tetracoordinated silicon atom. This view is further supported by the change in bond lengths. Whereas the length of the Si $-C_{sp}$ bond (1.838 Å) is close to the standard value, the length of the Si $-C_{sp}$ bonds (1.835 Å) is significantly higher (by 0.033 Å) in comparison with the bond of methylethylsilane, (d_{Si} $-C_{sp}^* = 1.802$ Å) [15]. The same sort of lengthening of the Si $-C_{sp}$ bond to 1.829 Å and 1.851 Å (d_{Si} $-C_{sp}^*$ 0.020 and 0.049 Å) had been established by x-ray diffraction measurements for the molecules of 1,8-bis(trimethylsilyl)octatetrayne [16] and bis[di(tert-butyl)tert-butylamino]silylacetylene [17].

The 1.3-dioxane ring has the conformation of a slightly distorted chair (folding parameters [18] S = -1.105, θ = 6.41°, φ_2 = 90.79°).

^{*}Notation as in Russian original: there are apparent errors in the notation and also possibly in the values — Translator.

Torsion angle ø		55*00	54.52'	54.50'	54.50	55-20'	54*50'
R-factor		 1,7735	1,7700	1,7530	1,7530	1,8100	1,7530
	3 _{JBe}	2,1	2,0	2,5	2,5	2,0	2.5
	3 _{/Ba}	5,5	5,1	5,0	5,0	5,2	5.0
C (J), Hz	3)Ae	2,6	2,7	3,1	3,1	2,45	3,10
ssco	3JAa	12,3	11,9	11.7	11,7	11,9	11.7
	2Jae	 -14,I	1	-14,5	-14,5	-13.7	ļ
	2 _{JA} B	 -12,3	-11,9	-11,7	-11,7	-12,6	-11,7
F	Я	7,05	7,05	0,29	0,05*	0,20*	0,20*
	6-H _B	3,85	3,76	3,75	3,40	3,40	3,38
	6-H _a	4,37	4,24	4,26	4,00	3,90	3,90
shift ð, pp	5-H e	1,40	1,15	1,40	06'0	1,15	0,60
Chemical 1	s-Ha	1,75	1,60	1,80	1,06	1,40	1,30
	4- Mee	1,23	0,98	1,17	0,90	0.83	0,83
	4-Mca	1,64	1,35	1,48	1,16	1,17	1,16
	2-Me	1,73	1,47	1,50	1,23	1,22	1,16
Solvent		cDCI ₃	CD2Cl2 + CCl4	CCI⁴	ccı	(CD ₃) ₂ CO	cD2Cl2
Com- pound		_		=	Ξ	2	

*Chemical shift of protons of SiMe2 grouping.

Atom	x	у	Z
Si	7500(0)	5000(0)	1712(1)
O(1)	4943(1)	3581(1)	7358(2)
O(2)	5251(1)	3033(1)	4655(2)
C(1)	6860(2)	4395(1)	3594(4)
C(2)	6326(2)	3998(1)	4705(3)
C(3)	5679(1)	3501(1)	6108(5)
C(4)	6287(2)	3382(1)	7910(3)
C(5)	4077(2)	3560(1)	6118(4)
C(6)	3683(2)	3063(1)	4496(4)
C(7)	4515(2)	3046(1)	3105(4)
C(8)	4338(2)	4099(1)	4850(4)
C(9)	3335(2)	3478(1)	8039(5)
C(10)	8465(2)	4947(1)	-80(6)

TABLE 2. Coordinates of Atoms in Molecule of the 1,3-Dioxane IV $(\times 10^4)$

TABLE 3. Bond Lengths (d) in Molecule of the 1,3-Dioxane IV

Bond	d. Å	Bond	d, Å
	1.025(0)		
SI-C(1)	1,835(2)	SI-C(10)	• 1,838(4)
Si-C(1a)	1,835(2)	Si—C(10a)	1,838(4)
O(1)-C(3)	1,416(3)	O(1)-C(5)	1,460(3)
O(2)-C(3)	1,411(2)	O(2)—C(7)	1,433(3)
$C_{(1)}-C_{(2)}$	1,196(2)	C(2)-C(3)	1,494(2)
C(3)-C(4)	1,512(4)	C(5)-C(6)	1,525(3)
C(5)-C(8)	1,524(3)	C(5)—C(9)	1,513(4)
C(6)-C(7)	1,501(4)		

Thus, by means of ¹H NMR spectrometry and x-ray structural analysis, it has been established for the 2-ethynyl-substituted 2,4,4-trimethyl-1,3-dioxanes I-IV that the 6-membered dioxane ring has the chair conformation with an axial position of the ethynyl-containing fragment at $C_{(2)}$ of the ring.

EXPERIMENTAL

The PMR spectra of compound I were recorded in Bruker spectrometers (200 and 80 MHz) in CDCl₃ and CD₂Cl₂, respectively. The PMR spectra of compounds II-IV were recorded in a Tesla BS-467 spectrometer (60 MHz) in CCl₄ and CD₂Cl₂; the spectrum of compound IV was also recorded in a Varian Unity 300 instrument in (CD₃)₂CO. The pulse length was 7.0 μ sec, pulse length at 90° 14.2 μ sec, depth of sweep 6000 Hz, data memory volume 16 K, scanning time 4.5 sec, lag between pulses 4 sec. Internal standard HMDS.

X-Ray Structure Study of IV. Transparent, colorless, monoclinic crystals of compound IV were grown from 50% aqueous alcohol. Elementary cell constants: a = 14.984(4), b = 27.220(6), c = 5.773(1) Å, $\gamma = 117.19(2)^{\circ}$, V = 2094.4(1.8) Å³. Space group A2/a, Z = 4, $d_{calc} = 1.143$ g/cm³. Cell constants of 1072 independent reflections with I >

Angle	ω (deg)	Angle	ω (deg)	
	111.7(1)	$C_{(1)}$ —Si— $C_{(1a)}$	107,4(1)	
$C_{(10)}$ -Si- $C_{(1a)}$	107,3(1)	$C_{(1)} - S_i - C_{(10a)}$	107,3(1)	
$C_{(10)}$ —Si— $C_{(10a)}$	111,5(2)	$C_{(1a)}$ -Si- $C_{(10a)}$	111,7(1)	
$C_{(3)} - O_{(1)} - C_{(5)}$	119,0(1)	$C_{(3)} - O_{(2)} - C_{(7)}$	112,7(2)	
$Si - C_{(1)} - C_{(2)}$	171,2(2)	$C_{(1)}-C_{(2)}-C_{(3)}$	178,8(3)	
$O_{(1)} - C_{(3)} - O_{(2)}$	112,2(2)	$O(1) - C_{(3)} - C_{(2)}$	111,4(2)	
$O_{(2)} - C_{(3)} - C_{(2)}$	109,6(2)	O(1)-C(3)-C(4)	105,7(2)	
$O_{(2)} - C_{(3)} - C_{(4)}$	106,6(2)	$C_{(2)} - C_{(3)} - C_{(4)}$	111,2(2)	
$O_{(1)} - C_{(5)} - C_{(6)}$	108,2(2)	$O_{(1)}-C_{(5)}-C_{(8)}$	111,4(2)	
$C_{(6)} - C_{(5)} - C_{(8)}$	112,7(2)	O(1)C(5)-C(9)	103,1(2)	
$C_{(6)} - C_{(5)} - C_{(9)}$	111,1(2)	$C_{(8)} - C_{(5)} - C_{(9)}$	109,9(2)	
$O_{(5)}-C_{(6)}-C_{(7)}$	111,5(2)	$O_{(2)} - C_{(7)} - C_{(6)}$	109,0(2)	

TABLE 4. Bond Angles (ω) in Molecule of the 1,3-Dioxane IV

TABLE 5. Torsion Angles (τ) in Molecule of the 1,3-Dioxane IV

Angle	τ (deg)	Angle	τ (deg)
	100 7		06.8
$C_{(10)}$ -Si- $C_{(1)}$ - $C_{(2)}$	-129,7	$C_{(1)} - C_{(2)} - C_{(3)} - O_{(2)}$	-90,8
$C_{(1a)}$ —Si— $C_{(1)}$ — $C_{(2)}$	111,9	$C_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}$	20,8
$C_{(10a)}$ —Si— $C_{(1)}$ — $C_{(2)}$	-7,3	$C_{(3)} - O_{(1)} - C_{(5)} - C_{(6)}$	44,8
$Si - C_{(1)} - C_{(2)} - C_{(3)}$	170,4	$C_{(3)} - O_{(1)} - C_{(5)} - C_{(8)}$	-79,6
$C_{(5)} - O_{(1)} - C_{(3)} - O_{(2)}$	-48,1	$C_{(3)} - O_{(1)} - C_{(5)} - C_{(9)}$	162,5
$C_{(5)} - O_{(1)} - C_{(3)} - C_{(2)}$	75,1	$O_{(1)}-C_{(5)}-C_{(6)}-C_{(7)}$	-48,5
$C_{(5)} - O_{(1)} - C_{(3)} - C_{(4)}$	-164,0	$C_{(8)}-C_{(5)}-C_{(6)}-C_{(7)}$	75,2
$C_{(7)} - O_{(2)} - C_{(3)} - O_{(1)}$	54,7	$C_{(9)}-C_{(5)}-C_{(6)}-C_{(7)}$	-161,0
$C_{(7)} - O_{(2)} - C_{(3)} - C_{(2)}$	-69,6	$C_{(3)} - O_{(2)} - C_{(7)} - C_{(6)}$	-60,5
$C_{(7)} - O_{(2)} - C_{(3)} - O_{(4)}$	170,0	$C_{(5)}-C_{(6)}-C_{(7)}-O_{(2)}$	57,7
$C_{(1)}-C_{(2)}-C_{(3)}-O_{(1)}$	138,4	1	

 $3\sigma(I)$ were measured in a Nicolet P3 automatic diffractometer (MoK α radiation without monochromator, $\theta/2\theta$ scanning to $2\theta_{max} = 36^{\circ}$). The structure was deciphered by the direct method, using the SHELXTL program set [19] and was refined in the anisotropic approximation (isotropic for hydrogen atoms) down to a divergence factor R = 0.030, R_w = 0.033.

The coordinates of the hydrogen atoms may be obtained from the authors upon request.

The syntheses of the 1,3-dioxanes I, II and III, and IV were performed by procedures given in [2, 3, 1], respectively.

REFERENCES

- 1. T. P. Kosulina, L. I. Ol'khovskaya, V. G. Kul'nevich, and N. V. Komarov, Khim. Geterotsikl. Soedin., No. 4, 563 (1993).
- 2. T. P. Kosulina and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 2, 193 (1996).
- T. R. Kosulina, V. G. Kul'nevich, N. V. Komarov, and L. I. Ol'khovskaya, R.F. Pat. 1,186,763; Byull. Izobret., No. 19, 57 (1993).
- 4. J. A. Pople and M. Gordon, J. Am. Chem. Soc., 89, 4253 (1967).
- 5. T. R. Forrest, Org. Magn. Res., 6, 355 (1974).
- 6. M. T. O. Anteunis, D. Tavernier, and F. A. Forremans, Heterocycles, 4, 293 (1976).
- 7. Yu. Yu. Samitov. Atlas of NMR Spectra of Stereoisomers [in Russian], Izd. KGU, Kazan' (1983), Vol. 2.
- 8. Yu. Yu. Samitov, F. Kh. Karashaeva, V. V. Ovchinnikov, and R. A. Cherkasov, Zh. Obshch. Khim., 56, 2442 (1986).
- 9. E. L. Eliel, N. Allinger, S. J. Angyal, and G. A. Morrison, Conformational Analysis, Wiley, New York (1966).
- 10. V. V. Klochkov, M. K. Latypov, and A. V. Aganov, Zh. Obshch. Khim., 63, 721 (1993).
- 11. J. A. Poole and A. A. Bothner-By, Chem. Phys., 42, 1339 (1965).
- 12. Yu. Yu. Samitov, Khim. Geterotsikl. Soedin., No. 12, 1587 (1978).

- 13. W. Hagata, T. Terasava, and H. Torik, J. Am. Chem. Soc., 86, 3746 (1964).
- 14. Z. A. Starikova and M. A. Khusainov, Zh. Strukt. Khim., 29, 110 (1988).
- 15. É. Ya. Lukevits, O. A. Pudova, and R. Ya. Strukovich, The Molecular Structure of Organosilicon Compounds [in Russian], Zinatne, Riga (1988).
- 16. B. F. Coles, P. B. Hitchcock, and D. R. M. Walton, J. Chem. Soc., Dalton Trans., No. 5, 442 (1975).
- 17. W. Glegg, U. Keingebiel, J. Neemann, G. M. Sheldrick, and N. H. Vater, Acta Crystallogr. B, 37, 987 (1981).
- 18. N. S. Zefirov and V. A. Palyulin, Dokl. Akad. Nauk SSSR, 252, 111 (1980).
- 19. G. M. Sheldrick, Computational Crystallography, Oxford University Press (1982), p. 506.