STEREOSTRUCTURE OF 2-ETHYNYL-SUBSTITUTED 2,4,4- TRIMETHYL-I,3-DIOXANES

T. P. Kosulina, F. Kh. Karataeva, V. E. Zavodnlk, and V. G. Kul'nevich

It has been shown by PMR spectrometry and x-ray structure analysis that the six-membered 1,3-dioxane ring of 2-ethynyl-substituted 2, 4, 4-trimethyl-1,3-dioxanes, either in solution or in the solid state, exists in a nearly ideal chair conformation with an axial position of the ethynyl substituent.

Certain compounds that we had synthesized previously [1-3], 2-ethynyl-substituted 2,4,4-trimethyl-l,3--dioxanes (I-IV), are of interest not only as predecessors of α -acetylene ketones [3], but also as models for studying the influence of substituents in positions 2 and 4 on the conformation of the six-membered ring.

The spatial structure of compounds I-IV was established by PMR spectrometry. The parameters of the spectra are listed in Table 1. Analysis of the values of the chemical shift and spin-spin coupling constants indicates that all δf the compounds of this series exist predominantly in the chair conformation, since there is a phenomenon of inversion of chemical shifts of the methylene protons at the $C_{(5)}$ atom (Table 1). This is explained mainly by a charge displacement effect [4] that is characteristic for compounds with heteroatoms carrying an unshared electron pair, with an upfield shift experienced by the 5-H_e proton in the anti position relative to the heteroatom [5]. It should be noted that the difference in chemical shifts of the axial and equatorial protons in position 5 ($\Delta \delta_{5a5e}$) is considerably smaller than for the analogous protons of 1,3-dioxane (-0.72 ppm) [6], with the following values (in ppm): Compound I, 0.35 (CDCI₃) and 0.45 (CD₂CI₂ + CCI₄); compound II, 0.40 (CCl₄); compound III, 0.16 (CCl₄); compound IV, 0.60 [(CD₃)₂CO] and 0.20 (CD₂Cl₂) (see Table 1). The decrease in values of $\Delta\delta_{535e}$ is related to the influence of the two methyl groups in the β -position relative to the 5-H_a and 5-H_e protons, with the β -effect being particularly significant for the axial proton. In 1,3-dioxanes, an equatorial methyl group shifts the signal of the ring proton in the β -position relative to the methyl group, with an upfield shift of 0.4 ppm; and as a consequence, inversion of chemical shifts of the axial and equatorial protons in position 5 cannot be observed [6].

In the case of the methylene protons H_A and H_B at the $C_{(6)}$ atom, we also observe inversion of the nuclear magnetic screening constants and significant values of $\Delta\delta_{HAHB}$ (from 0.42 to 0.60 ppm; see Table 1), which is a characteristic indicator for 1,3-dioxanes in the chair conformation [6]. The assignment of signals to the axial and equatorial protons was made on the basis of an analysis of parameters of the four-spin system ABXY and the substantial difference in values of the SSCC ${}^{3}J_{Aa}$ (11.7-12.3 Hz) and ${}^{3}J_{Ba}$ (5.0-5.5 Hz) (Table 1). At the C₍₄₎ atom, the protons of the gem-dimethyl grouping also

Kuban State Teclmological University, Krasnodar 350072, Russia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 163-169, February, 1998. Original article submitted April 25, 1997; revision submitted September 2, 1997.

Fig. 1. Fragments of PMR spectrum of dimethyl-bis[(2,4,4-trimethyl-l,3-dioxanyl-2) ethynyl]silane, taken in $(CD_3)_2CO$.

Fig. 2. Structure of the 1,3-dioxane IV as determined by x-ray structure analysis.

experience inversion of chemical shifts with rather large values of $\Delta\delta_{Me}a_{Me}e$ (-0.33 : -0.67 ppm); here, the signal of the axial methyl is broadened in comparison with that of the equatorial methyl as a consequence of spin-spin coupling with the 5-H_a proton. Usually, the value of the long-range SSCC ⁴J_{HCCCH3} is about 0.8 Hz [7]; for compound IV, it is equal to 0.7 Hz (Fig. 1). In principle, inversion of chemical shifts of protons in position 6 and the gem-dimethyl grouping at the $C_{(4)}$ atom in six-membered heterocycles is used as a criterion of the axial position of the substituent at the $C_{(2)}$ atom. In the series of compounds I-IV, there are two substituents in this position, i.e., a CH₃ group and an ethynyl-containing fragment. It has been shown by numerous physicochemicai studies of 2-methyl-substituted cyclohexanes and 1,3-dioxanes that a twocomponent equilibrium is realized in solution, between identical conformational structures $-$ the chair-a (K_a) and the chair-e (K_e) , with the axial conformer accounting for 4% [8, 9].

A study of the influence of temperature in the case of 5,5-dimethyl-1,3-dioxane with a C=CH at the C₍₂₎ atom of the ring, by means of dynamic ¹H and ¹³C NMR, revealed a predominance of the chair-axial conformer K₂, with a value of ΔG_{283} in (CD₃)₂CO equal to 1.81 kJ/mole [10]. In this case (and also for compounds I-IV), the reason for the inversion of chemical shifts of the protons at the $C_{(4)}$ and $C_{(6)}$ atoms may be the magnetically anisotropic and electrical effects of the axial $C = C$ bond in the chair conformation K_a , the same as in cyclic esters and sulfites [7]. Nonetheless, according to data on the influence of the solvent on conformational equilibrium in solutions of similar compounds [10], we cannot eliminate the possibility of a certain contribution of the K_r form. This is supported by the fact of change in magnitude of the SSCC (geminal and vicinal) when the solvent is changed in the case of compounds I and IV (Table 1).

In Fig. 1 we show part of the ${}^{1}H$ NMR spectrum of compound IV, in which there are signals of the protons at the $C_{(5)}$ (H_a) and $C_{(6)}$ atoms.

The region of resonance of A,B-protons shows up as a typical spectrum of an ABXY system, where the values of the SSCC are strictly stereospecific within the framework of a chairlike conformation of the 1,3-dioxane systems [7]: ${}^{2}J_{AR}$ \sim $^{3}J_{Aa}$ (-12.6, 11.9 Hz), $^{3}J_{Ba}$ ~ 1/2 $^{3}J_{Aa}$ (5.2, 11.9 Hz), $^{3}J_{Ae}$ > $^{3}J_{Be}$ (2.45, 2.0 Hz). The more complex form of the multiplet pertaining to the 5-H_a proton is due to its long-range spin-spin coupling with the protons of the axial methyl group in position 4 (⁴J_{HCCCH3}, 0.7 Hz). The value of $\Delta\delta_{AB}$, 0.5 ppm, is higher than for 1,3-dioxane (0.34 ppm) and is somewhat lower than the analogous value in cyclohexane (0.55 ppm) [6]. The value of the geminal constant ${}^{2}J_{AR} = -12.6$ Hz, which is extremely sensitive to the stereochemistry of six-membered heterocycles, is 0.45 Hz lower than the value for the methylene fragment in cyclohexane. According to the theory set forth in [11], the geminal constant $^{2}J_{HH}$ in CH₂X fragments will depend on the $C-H$ bonds and on the relative position of the unshared electron pair of X, which is related to the cyclic torsion angle φ . By using plots of $\Delta^2 J_{HH}$ as a function of φ , we can estimate the torsion angle of a fragment containing a heteroatom with an unshared electron pair. In the present case, this angle is \sim 56°; i.e., the carbon part of the ring is somewhat flattened in comparison with cyclohexane (58°) $[12]$; according to data reported in [6, 13], this is the reason for the decrease in magnitude of nonequivalence of chemical shifts of the A,B-protons (in comparison with cyclohexane). A more precise evaluation of the torsion angles can be made by means of the R-factor, since its use requires values of all four SSCCs $3J_{HH}$. Values calculated for the R-factor [13] and the corresponding torsion angles that are listed in Table 1 demonstrate structural uniformity of compounds I-IV, and these values are in good agreement with data obtained for 1,3-dioxanes by x-ray diffraction [7].

In order to confirm these results and to study 2-ethynyl-substituted 1,3-dioxanes, with the aim of investigating the conformation of the 1,3-dioxane ring and the position of the ethynyl fragment relative to this ring, we investigated the molecular-crystal structure of the 1,3-dioxane IV by x-ray diffraction. In Fig. 2 we illustrate the geometry of a threedimensional model of the molecule of dimethyl-bis[(2,4,4-trimethyl-1,3-dioxanyl-2)ethynyl]silane (IV). The coordinates of the atoms, the bond lengths, bond angles, and torsion angles are listed in Tables 2-5. The 2,4,4-trimethyl-l,3-dioxanyl-2-ethynyl fragments are absolutely identical; therefore, in the subsequent discussion, we will consider only one of these fragments. In most cases, the interatomic distances and the bond angles match the standard values [14]. An exception is found in the system of atoms $Si-C_{(1)} \equiv C_{(2)}-C_{(3)}$. The linearity of this fragment is disrupted, since the angles $Si-C_{sp} \equiv C_{sp}$ and $C_{sp} \equiv C_{sp} - C_{sp3}$ are equal to 171.2° and 178.8°, respectively, and their change is due to steric strain at the tetracoordinated silicon atom. This view is further supported by the change in bond lengths. Whereas the length of the $Si-C_{s03}$ bond (1.838 Å) is close to the standard value, the length of the Si-C_{sp} bonds (1.835 Å) is significantly higher (by 0.033 Å) in comparison with the bond of methylethylsilane, $(d_{Si}-C_{sp}^* = 1.802 \text{ Å})$ [15]. The same sort of lengthening of the Si-C_{sp} bond to 1.829 Å and 1.851 Å $(d_{Si}-C_{so}^*$ 0.020 and 0.049 Å) had been established by x-ray diffraction measurements for the molecules of 1,8bis(trimethylsilyl)octatetrayne [16] and bis[di(tert-butyl)tert-butylamino]silylacetylene [17].

The 1.3-dioxane ring has the conformation of a slightly distorted chair (folding parameters [18] S = -1.105, θ = 6.41°, $\varphi_2 = 90.79^{\circ}$).

^{*}Notation as in Russian original: there are apparent errors in the notation and also possibly in the values $-$ Translator.

0 $\frac{1}{2}$ \bar{e}

Atom	x	y	z
Si	7500(0)	5000(0)	1712(1)
O(1)	4943(1)	3581(1)	7358(2)
O(2)	5251(1)	3033(1)	4655(2)
$C_{(1)}$	6860(2)	4395(1)	3594(4)
$C_{(2)}$	6326(2)	3998(1)	4705(3)
$C_{(3)}$	5679(1)	3501(1)	6108(5)
$C_{(4)}$	6287(2)	3382(1)	7910(3)
$C_{(5)}$	4077(2)	3560(1)	6118(4)
$C_{(6)}$	3683(2)	3063(1)	4496(4)
C(7)	4515(2)	3046(1)	3105(4)
$C_{(8)}$	4338(2)	4099(1)	4850(4)
C(9)	3335(2)	3478(1)	8039(5)
C(10)	8465(2)	4947(1)	$-80(6)$

TABLE 2. Coordinates of Atoms in Molecule of the 1,3-Dioxane IV $(\times 10^4)$

TABLE 3. Bond Lengths (d) in Molecule of the 1,3-Dioxane IV

Bond	d. Å	Bond	d. Å
$Si-C(1)$	1,835(2)	$Si-C(10)$	1.838(4)
$Si-C(1a)$	1,835(2)	$Si-C(10a)$	1,838(4)
$O(1) - C(3)$	1,416(3)	$O(1) - C(5)$	1,460(3)
$O(2) - C(3)$	1,411(2)	$O(2) - C(7)$	1.433(3)
$C_{(1)} - C_{(2)}$	1,196(2)	$C_{(2)} - C_{(3)}$	1,494(2)
$C_{(3)} - C_{(4)}$	1,512(4)	$C_{(5)} - C_{(6)}$	1.525(3)
$C(5)-C(8)$	1,524(3)	$C_{(5)} - C_{(9)}$	1.513(4)
$C_{(6)} - C_{(7)}$	1,501(4)		

Thus, by means of ¹H NMR spectrometry and x-ray structural analysis, it has been established for the 2-ethynylsubstituted 2,4,4-trimethyl-l,3-dioxanes I-IV that the 6-membered dioxane ring has the chair conformation with an axial position of the ethynyl-containing fragment at $C_{(2)}$ of the ring.

EXPERIMENTAL

The PMR spectra of compound I were recorded in Bruker spectrometers (200 and 80 MHz) in CDCl₃ and CD₂Cl₂, respectively. The PMR spectra of compounds II-IV were recorded in a Tesla BS-467 spectrometer (60 MHz) in CCL and CD₂CI₂; the spectrum of compound IV was also recorded in a Varian Unity 300 instrument in $(CD_1)_2CO$. The pulse length was 7.0 μ sec, pulse length at 90 $^{\circ}$ 14.2 μ sec, depth of sweep 6000 Hz, data memory volume 16 K, scanning time 4.5 sec, lag between pulses 4 sec. Internal standard HMDS.

X-Ray Structure Study of IV. Transparent, colorless, monoclinic crystals of compound IV were grown from 50% aqueous alcohol. Elementary cell constants: $a = 14.984(4)$, $b = 27.220(6)$, $c = 5.773(1)$ \dot{A} , $\gamma = 117.19(2)$ °, $V =$ 2094.4(1.8) \AA^3 . Space group A2/a, Z = 4, d_{calc} = 1.143 g/cm³. Cell constants of 1072 independent reflections with I >

Angle	ω (deg)	Angle	ω (deg)	
$C_{(1)} - Si - C_{(10)}$	111,7(1)	$C_{(1)} - Si - C_{(1a)}$	107,4(1)	
$C_{(10)} - Si - C_{(1a)}$	107,3(1)	$C_{(1)} - Si - C_{(10a)}$	107,3(1)	
$C_{(10)} - Si - C_{(10a)}$	111.5(2)	$C_{(1a)} - Si - C_{(10a)}$	111.7(1)	
$C_{(3)} - O_{(1)} - C_{(5)}$	119,0(1)	$C_{(3)} - O_{(2)} - C_{(7)}$	112,7(2)	
$Si-C(1)-C(2)$	171,2(2)	$C_{(1)} - C_{(2)} - C_{(3)}$	178, 8(3)	
$O(1) - C(3) - O(2)$	112,2(2)	$O(1)-C(3)-C(2)$	111,4(2)	
$O(2) - C(3) - C(2)$	109,6(2)	$O(1) - C(3) - C(4)$	105,7(2)	
$O(2) - C(3) - C(4)$	106, 6(2)	$C_{(2)}-C_{(3)}-C_{(4)}$	111,2(2)	
$O(1) - C(5) - C(6)$	108,2(2)	$O(1) - C(5) - C(8)$	111,4(2)	
$C_{(6)} - C_{(5)} - C_{(8)}$	112,7(2)	$O(1) - C(5) - C(9)$	103, 1(2)	
$C_{(6)} - C_{(5)} - C_{(9)}$	111, 1(2)	$C_{(8)} - C_{(5)} - C_{(9)}$	109,9(2)	
$O(5) - C(6) - C(7)$	111,5(2)	$O(2) - C(7) - C(6)$	109.0(2)	

TABLE 4. Bond Angles (ω) in Molecule of the 1,3-Dioxane IV

TABLE 5. Torsion Angles $(τ)$ in Molecule of the 1,3-Dioxane IV

Angle	τ (deg)	Angle	τ (deg)
$C_{(10)} - S_i - C_{(1)} - C_{(2)}$ $C_{(1a)} - S_i - C_{(1)} - C_{(2)}$ $C_{(10a)} - Si - C_{(1)} - C_{(2)}$ $Si-C(1)-C(2)-C(3)$ $C_{(5)}-O_{(1)}-C_{(3)}-O_{(2)}$	-129.7 111.9 -7.3 170.4 -48.1	$C_{(1)}-C_{(2)}-C_{(3)}-O_{(2)}$ $C_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}$ $C_{(3)}-O_{(1)}-C_{(5)}-C_{(6)}$ $C_{(3)}-O_{(1)}-C_{(5)}-C_{(8)}$ $C_{(3)}-O_{(1)}-C_{(5)}-C_{(9)}$	-96.8 20.8 44.8 -79.6 162.5
$C_{(5)}-O_{(1)}-C_{(3)}-C_{(2)}$ $C_{(5)} - O_{(1)} - C_{(3)} - C_{(4)}$ $C_{(7)}-O_{(2)}-C_{(3)}-O_{(1)}$ $C(7) - O(2) - C(3) - C(2)$ $C(7) - O(2) - C(3) - O(4)$ $C_{(1)} - C_{(2)} - C_{(3)} - O_{(1)}$	75.1 -164.0 54.7 -69.6 170.0 138.4	$O(1) - C(5) - C(6) - C(7)$ $C_{(8)}-C_{(5)}-C_{(6)}-C_{(7)}$ $C(9) - C(5) - C(6) - C(7)$ $C_{(3)}-O_{(2)}-C_{(7)}-C_{(6)}$ $C_{(5)}-C_{(6)}-C_{(7)}-O_{(2)}$	-48.5 75.2 -161.0 -60.5 51.7

 $3\sigma(I)$ were measured in a Nicolet P3 automatic diffractometer (MoK α radiation without monochromator, $\theta/2\theta$ scanning to $2\theta_{\text{max}} = 36^{\circ}$). The structure was deciphered by the direct method, using the SHELXTL program set [19] and was refined in the anisotropic approximation (isotropic for hydrogen atoms) down to a divergence factor $R = 0.030$, $R_w = 0.033$.

The coordinates of the hydrogen atoms may be obtained from the authors upon request.

The syntheses of the 1,3-dioxanes I, II and III, and IV were performed by procedures given in [2, 3, 1], respectively.

REFERENCES

- 1. T. P. Kosulina. L. I. Ol'khovskaya, V. G. Kul'nevich, and N. V. Komarov, Khim. Geterotsikl. Soedin., No. 4, 563 (1993).
- . T. P. Kosulina and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 2, 193 (1996).
- 3. T. R. Kosulina, V. G. Kul'nevich, N. V. Komarov, and L. I. Ol'khovskaya, R.F. Pat. 1,186,763; Byull. Izobret., No. 19, 57 (1993).
- 4. J. A. Pople and M. Gordon, J. Am. Chem. Soc.. 89, 4253 (1967).
- 5. T. R. Forrest. Org. Magn. Res.. 6, 355 (1974).
- 6. M. T. O. Anteunis. D. Tavernier, and F. A. Forremans. Heterocycles. 4, 293 (1976).
- 7. Yu. Yu. Samitov. Atlas of NMR Spectra of Stereoisomers [in Russian], lzd. KGU, Kazan' (1983), Vol. 2.
- 8. Yu. Yu. Samitov, F. Kh. Karashaeva, V. V. Ovchinnikov, and R. A. Cherkasov, Zh. Obshch. Khim., 56, 2442 (1986).
- 9. E. L. Eliel. N. Atlinger. S. J. Angyal. and G. A. Morrison. Conformational Analysis, Wiley. New York (1966).
- 10. V. V. Ktochkov. M. K. Latypov. and A. V. Aganov. Zh. Obshch. Khim., 63. 721 (1993).
- I1. J. A. Poole and A. A. Bothner-By, Chem. Phys.. 42. 1339 (1965).
- 12. Yu. Yu. Samitov. Khim. Geterotsikl. Soedin.. No. 12. 1587 (1978).
- 13. W. Hagata, T. Terasava, and H. Torik, J. Am. Chem. Soc., 86, 3746 (1964).
- 14. Z. A. Starikova and M. A. Khusainov, Zh. Strukt. Khim., 29, 110 (1988).
- 15. É. Ya. Lukevits, O. A. Pudova, and R. Ya. Strukovich, The Molecular Structure of Organosilicon Compounds [in Russian], Zinatne, Riga (1988).
- 16. B. F. Coles, P. B. Hitchcock, and D. R. M. Walton, J. Chem. Soc., Dalton Trans., No. 5,442 (1975).
- 17. W. Glegg, U. Keingebiel, J. Neemann, G. M. Sheldrick, and N. H. Vater, Acta Crystallogr. B, 37, 987 (1981).
- 18. N. S. Zefirov and V. A. Palyulin, Dokl. Akad. Nauk SSSR,252, 111 (1980).
- 19. G. M. Sheldrick, Computational Crystallography, Oxford University Press (1982), p. 506.